機率與機率分佈

  • 事件

  • 機率

  • 隨機變數

  • 機率分佈

  • 機率密度函數:隨機變數值 xx 和機率 P\mathcal{P} 之間的函數關係。

常態(機率)分佈 normal distribution (a.k.a 高斯分佈 Gaussian distribution)

P(x)=1σ2πe[(xμ)22σ2]P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\left[\frac{(x - \mu)^2}{2\sigma^2} \right]}
  • σ\sigma refers to the standard deviation.

  • μ\mu refers to the mean.

  • ee is a constant, respectively, the base of the natural log system and approximately equals to 2.718.

  • π\pi a constant with an approximate value of 227\frac{22}{7} or 3.1416.

  • xx refers to the value of the random variable.

rnorm(n=10)
 
[1] -0.48200811  1.02070719  0.09263650  0.07460888  1.75003405  
0.22843413
 [7] -0.11792523  0.39054810 -0.35487301 -1.82808605

Poisson Distribution

P(x)=μxeμx!P(x) = \frac{\mu^{x}e^{-\mu}}{x!}
  • 針對計數資料 count data

  • trial 次數很多 (n 很大), 事件發生機率(P)很小時的二項分布。

Last updated